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Abstract

This study examined the characteristics of small molecular structure nano-graphene in a dynamic hierarchical self-
assembly and found that graphene is rearranged under its own pressure during dynamic aggregation and water
ripples are formed by the d-spacing. The composition and structure were studied using a range of material
characterization techniques. No covalent bonds were observed between molecules, and the self-assembled driving
force was the only intermolecular interaction: Van der Waals’ force in the intra-layer and π–π interactions between
layers. The arranged-rearranged structures provided a range of lithium ion shuttle channels, including the space
between layers and diffusing through the nanosheets, which decrease the diffusion distance of lithium ions
remarkably and reduce the irreversible capacity of the battery.

Keywords: Hexabenzocoronene, Dynamic hierarchical self-assemble, d-spacing, Rearrange

Introduction
The development of green alternative energy sources has
received considerable interest. Recently, nano-graphene
and graphene composites attracted interest for used as
lithium ion anodes [1–3]. In addition, a variety of core–
shell structures with carbonaceous materials encapsu-
lated silicon or metal nanostructure have been proposed
to alter the performance of the anode materials [4]. Fur-
thermore, graphene is one of the most promising mate-
rials to replace graphite and has been studied widely
since Professor Andre Konstantin Geim and Konstantin
Sergeevich produced stable graphene in 2004 using the
deceptively simple Scotch tape method [5, 6]. Other
methods of producing graphene include liquid phase
and thermal exfoliation [7–9], chemical vapor deposition
[10, 11], and synthesis on SiC [12, 13]. Graphene has a
hexagonal honeycomb lattice structure, and its amazing
properties have stimulated strong interest [14–20].

Hexabenzocoronene (HBC, hereafter) is a representa-
tive example of nano-graphene that has been well stud-
ied [21–30]. The smaller modular sizes and size-tunable
are the main features. HBC is one of the allotropes of
carbon with a layered structure of sp2 carbon atoms.
Each layer has a hexagonal honeycomb structure called
a nano-graphene sheet (Fig. 1) [31]. While the chemistry
of nano-graphene has been well established, its ability to
overlap and aggregate in a generalized nano-morphology
molecule is not completely understood. Therefore, deter-
mining how nano-sized graphene molecules are stacked
and how the stacked sheets interact is important.
This paper introduces the dynamic hierarchical

self-assembly structure–function relationship of hexa-
benzocoronene. By observing the d-spacing generated
via the dynamic self-assembly at the molecular level and
the relationship between the clusters of nano-graphene,
an in-depth analysis of the formation factors inside of
nano-graphene was analyzed further.
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Methods/Experimental
Materials
Hexabenzocoronene was synthesized according to a pre-
viously reported procedure [32–35]. All solvents were
freshly distilled from proper dehydrating agents under
argon gas. All chemicals are analytical grade and pur-
chased from Shanghai Chemical Corp. Thin-layer chro-
matography (TLC) was performed on silica gel 60 F254
(Merck DGaA, Germany). The electrolyte solution was
purchased from Shanghai Annaiji Technology Co., Ltd.
The electrolyte solution is made up from 0.1 M tetra--
n-butylammonium perchlorate (TBAP). Deionized water
is used for all experiments.

Characterization
The morphology and lattice fringe were observed using a
scanning electron microscope (SEM, JEOL JCM-6000Plus),
transmission electron microscope (TEM, JEOL H-7000),
and high-resolution transmission electron microscope
(HRTEM, JEOL JEM-2100).

Electrochemical Measurements
Electrochemical measurements were performed on the
Shanghai Chenhua CHI660e system. A three-electrode
system is used, a platinum wire for the counter elec-
trode, a platinum plate with a fixed of electrode, and a
saturated calomel electrode for the reference electrode.
The concentration of the supporting electrolyte TBAP
was 0.1 mol/L, and the analytical pure solvent was
acetonitrile (ACN). Firstly, polish the platinum carbon
compound electrode vertically on the circular gauze on
the glass brick (paint “8”, 0.05 μm aluminum powder
and water as friction agent); secondly, rinse off the white
aluminum with distiller water and then use ultrasonic
for 1 min by acetone; and finally, use ear ball washed
and blown dry. Then, the suspension of the hexabenzo-
coronene sample was dropped on the surface of the
glassy carbon compound electrode, and the solvent was

naturally evaporated to dryness. Then 0.1 M tetra-n-bu-
tylammonium perchlorate and 0.1 mM ferrocene elec-
trolyte solution were scanned at a scan rate of
0.1 mV s−1.

Results and Discussion
Hexabenzocoronene is carbon–carbon material com-
bined with significant π–π conjugate chemical bonding.
A procedure for the preparation for hexabenzocoronene
consisted of a series of reactions, such as Sonogashira,
Diels-Alder reaction, Lewis catalyst-based cycle reaction,
and deprotonation under basic conditions to give inter-
mediates in unsatisfactory yields [36–38]. The target
compounds are generated from intermediates and nitro-
methane with the treatment of a Lewis reagent gave the
target compounds in a similarly low yield [39, 40]. The
reaction solution was quenched with methanol, followed
by repetitive dissolution and precipitation with methy-
lene chloride/methanol. The collected crude compounds
were washed with methanol/acetone (1:1) to give a
yellowish solid (see Additional file 1) [41, 42].
HBC has been widely used, but in the study of

self-assembled system, it needs to be further understood.
Although studies of the same or similar anode materials
have been mentioned in the reported literature, the HBC
study is still insufficient. Therefore, the focus of the
work is on the detailed research of the self-assembly sys-
tem, and put it on one by one to understand the internal
dynamic distribution of aggregation and the induction
and to improve the supplement of the lack of content
anode materials.
The small-molecule nano-graphene self-assembled dy-

namically to form regular thin sheets, which were se-
quentially and systematically stacked to form
intermittent sheet nano-graphene fragments that were
held tightly to each other [43]. On the other hand, the
dynamic self-assembled aggregate structure was super-
imposed on the subject to rearrange/change under

Fig. 1 Hexabenzocoronene structure and self-assembly diagram
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stress, thereby forming an uneven gear shape [44, 45].
Owing to the size of the nano-graphene itself, there was
no obvious bulge in the overall structure. As shown in
the figure, the entire nano-aggregation was regular, like
a fingerprint shape (Fig. 2).
To explain the abovementioned rearrangement/change

caused by its own weight and whether it will affect the
material properties, scanning electron microscopy
(SEM) was performed to determine if the particle size
had changed. As shown in Fig. 3, the nanoparticles are
gathered together and their particle size was unaffected
by the rearrangement/change. The SEM image clearly
shows that nano-graphene was distributed uniformly as
nanoparticles. In addition, daisy-like clusters, 200, 50,
and 20 nm in range, were observed. Their end parts
were stretched outward with certain regularity, which is
densely concentrated like a flower pattern. Therefore,
the self-assembly process of nano-graphene sheets can
be carried out in two ways. First, the nano-graphene
molecules are self-assembled by overlapping the edges.
Second, nano-graphene molecules overlap with each
other, which enables the self-assembly of molecules.
Transmission electron microscopy (TEM) showed that

the hexabenzocoronene molecule exhibits structural fea-
tures with a coherent layer spacing and a molecular layer
spacing from 0.34 nm. High-resolution TEM (HRTEM)
indicated that nanoparticles bind to each other (Fig. 4)
[46, 47]. The concentric diffraction rings in the selected
area electron diffraction (SAED) pattern confirm the
polycrystalline nature of hexabenzocoronene. Further-
more, the HRTEM image shows that most of the
graphene-like walls consisted of a few layers (≈ 14
layers), indicating typically ultrathin structures [48–51].
The layer-by-layer structures of the hexabenzocoronene

and the perfect d-spacing between the layers highlight
the performance of LIB anode materials.
The voltage profiles of hexabenzocoronene and the

performance were measured using a cycling test. Figure 5
shows the capacity of the electrode at various current
densities and the corresponding voltage profiles. The
capacity at 100 cycles is 200 mAh/g, and good reversibil-
ity was observed with a coulombic efficiency over 98%.
Cycle voltage (CV) was performed at the high poten-

tial of the lithium-ion batteries to determine the
long-term stability and potential energy (Fig. 6a).
According to the above description, CV (Li+/Li vs Ag/
AgCl) was further undertaken to understand the lithium
storage behavior. The CV curves hexabenzocoronene
were measured at the same scan rates (0.1 mV s−1) and
display redox peaks with slight shifts with increasing
scan rates, thereby showing a rectangular shape with in-
creasing scan rates, as shown in Fig. 6. The twisted rect-
angular shape at a fast scan rate may be due to the poor
electronic nature of the polycrystalline materials, as pro-
posed by Dunn et al. The measured highest occupied
molecular orbital (HOMO) energy at a fixed potential
(V) can be separated into oxidation increases (V1),
standard oxidation effects (V2), and standard reduction
effects (V3) (Eq. (1)), which can quantitatively
characterize the capacity contribution of each part.

HOMO Vð Þ ¼ V 1 − V 2 þ V 3 ð1Þ

The anion/radical anion with an electron donating
functional group leads to a homogeneous/uniform elec-
tron distribution throughout the flake, which is benefi-
cial for maximizing the number of Li+ incorporated into

Fig. 2 Nano-graphene dynamic hierarchical assemble to rearrange and change
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Fig. 3 SEM and TEM images for hexabenzocoronene

Fig. 4 HRTEM image of hexabenzocoronene with their dynamic hierarchical assembles
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the hexabenzocoronene. The charging process (Li+

transfer) in hexabenzocoronene anodes requires
stabilization. The calculated stabilization HOMO energy
of the hexabenzocoronene radical anode ranges from
5.592 V, as shown in Fig. 6b.
The inset in Fig. 7 shows that the assembled

multi-structures experienced arranged and rearranged
processes. The optimal d-spacing between the layers for
hexabenzocoronene was examined. This paper revealed
a multi-diffusing process of lithium ions as the dynamic
structure providing dynamic diffusion paths. TEM
showed that lithium diffuses between the layers and has
the ability to pass through the sheets, which greatly

increases the lithium ion (yellow spot) diffusion effi-
ciency; the Additional file 1: Figure S1 and Table S1
show adsorption and desorption: Va/cm

3 (STP) g−1 value
is 110.47 and 96.62. According to adsorption-desorption
isotherm, there is no hysteresis loop in the isotherms of
HBC. Moreover, Additional file 1: Figure S2 and Table
S2 show BET surface area, and the correlation coefficient
value is 0.9999,Vm is 18.647 cm3 (STP) g−1, and as,BET is
81.16 m2 g−1. The TEM image revealed self-assembled
structures that were disorganized in the center of the
fingerprint, and then they were arranged more regularly
into a fingerprint-like structure. In the process of the
self-assembly of graphene sheets, graphene sheets

Fig. 5 The galvanostatic discharge–charge voltage profiles of hexabenzocoronene anode as a function of cycling numbers

Fig. 6 Cyclic voltammograms (CVs) of ferrocene current collector disc vs. silver metal in the electrolyte (a) without additive, and b oxidation energy
HOMO values in acetonitrile using tetrabutylammonium perchloride as electrolyte
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arrange in a stacked manner and self-assemble into a
layered two-dimensional structure in a head-to-head
manner. Moreover, the bonding force between molecules
is weak with no strong chemical bonds. The
self-assembled structure is a dynamic process involving
the angular-rearrangement of self-assembled layers of
graphene nanosheets under the action of energy. More-
over, TEM image showed that lithium ions have different
diffusion modes between the graphene sheets, which can
diffuse between the layers and pass through the layers,
from the inner layer to the outer layer diffusion. There-
fore, nano-graphene exhibits strong lithium ion diffusion
properties and surprising lithium ion storage capacity.

Conclusion
HBC shows good structure durability and stability. The
electron density with the optimal d-spacing in the
self-assemblies led to a significantly enhanced LIB anode
charge capacity and cycling stability. These results re-
vealed a structure–property correlation between the na-
ture of functional groups and Li storage capacity.
Nevertheless, identifying the mechanism for how
nano-graphene hierarchically assembles and dominates
the overall battery performance will be an important re-
search topic. Through these studies, a more rational and
effective application of nano-graphene will be realized.
Observing the characteristics of the internal architecture
from a microscopic perspective and analyzing the dy-
namic hierarchical self-assembly properties of a
nano-graphene sheet one by one will be the subjects of a
future study.

Additional File

Additional file 1: Supporting information (DOCX 436 kb)
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